Lightweight and efficient neural natural language processing with quaternion networks

Many state-of-the-art neural models for NLP are heavily parameterized and thus memory inefficient. This paper proposes a series of lightweight and memory efficient neural architectures for a potpourri of natural language processing (NLP) tasks. To this end, our models exploit computation using Quate...

全面介紹

Saved in:
書目詳細資料
Main Authors: TAY, Yi, ZHANG, Aston, LUU, Anh Tuan, RAO, Jinfeng, ZHANG, Shuai, WANG, Shuohang, FU, Jie, HUI, Siu Cheung
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2019
主題:
在線閱讀:https://ink.library.smu.edu.sg/scis_studentpub/2
https://ink.library.smu.edu.sg/context/scis_studentpub/article/1002/viewcontent/P19_1145.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:Many state-of-the-art neural models for NLP are heavily parameterized and thus memory inefficient. This paper proposes a series of lightweight and memory efficient neural architectures for a potpourri of natural language processing (NLP) tasks. To this end, our models exploit computation using Quaternion algebra and hypercomplex spaces, enabling not only expressive inter-component interactions but also significantly (75%) reduced parameter size due to lesser degrees of freedom in the Hamilton product. We propose Quaternion variants of models, giving rise to new architectures such as the Quaternion attention Model and Quaternion Transformer. Extensive experiments on a battery of NLP tasks demonstrates the utility of proposed Quaternion-inspired models, enabling up to 75% reduction in parameter size without significant loss in performance.