Lightweight and efficient neural natural language processing with quaternion networks
Many state-of-the-art neural models for NLP are heavily parameterized and thus memory inefficient. This paper proposes a series of lightweight and memory efficient neural architectures for a potpourri of natural language processing (NLP) tasks. To this end, our models exploit computation using Quate...
محفوظ في:
المؤلفون الرئيسيون: | TAY, Yi, ZHANG, Aston, LUU, Anh Tuan, RAO, Jinfeng, ZHANG, Shuai, WANG, Shuohang, FU, Jie, HUI, Siu Cheung |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2019
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/scis_studentpub/2 https://ink.library.smu.edu.sg/context/scis_studentpub/article/1002/viewcontent/P19_1145.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Simple and effective curriculum pointer-generator networks for reading comprehension over long narratives
بواسطة: TAY, Yi, وآخرون
منشور في: (2019) -
Understanding the Genetic Makeup of Linux Device Drivers
بواسطة: Tschudin, Peter Senna, وآخرون
منشور في: (2013) -
Scaling human activity recognition via deep learning-based domain adaptation
بواسطة: KHAN, Md Abdullah Hafiz, وآخرون
منشور في: (2018) -
A Prolog-based definition of an entity-relationship language
بواسطة: CHAN, H., وآخرون
منشور في: (1993) -
Revisiting masked auto-encoders for ECG-language representation learning
بواسطة: PHAM, Hung Manh, وآخرون
منشور في: (2024)