Lightweight and efficient neural natural language processing with quaternion networks

Many state-of-the-art neural models for NLP are heavily parameterized and thus memory inefficient. This paper proposes a series of lightweight and memory efficient neural architectures for a potpourri of natural language processing (NLP) tasks. To this end, our models exploit computation using Quate...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: TAY, Yi, ZHANG, Aston, LUU, Anh Tuan, RAO, Jinfeng, ZHANG, Shuai, WANG, Shuohang, FU, Jie, HUI, Siu Cheung
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 2019
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/scis_studentpub/2
https://ink.library.smu.edu.sg/context/scis_studentpub/article/1002/viewcontent/P19_1145.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English

مواد مشابهة