Solving large-scale extensive-form network security games via neural fictitious self-play
Securing networked infrastructures is important in the real world. The problem of deploying security resources to protect against an attacker in networked domains can be modeled as Network Security Games (NSGs). Unfortunately, existing approaches, including the deep learning-based approaches, are in...
محفوظ في:
المؤلفون الرئيسيون: | XUE, Wanqi, ZHANG, Youzhi, LI, Shuxin, WANG, Xinrun, AN, Bo, YEO, Chai Kiat |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2021
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9140 https://ink.library.smu.edu.sg/context/sis_research/article/10143/viewcontent/Solving_LargeScale_pvoa.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
CFR-MIX: Solving imperfect information extensive-form games with combinatorial action space
بواسطة: LI, Shuxin, وآخرون
منشور في: (2021) -
Solving large-scale pursuit-evasion games using pre-trained strategies
بواسطة: LI, Shuxin, وآخرون
منشور في: (2023) -
Player performance prediction in massively multiplayer online role-playing games (MMORPGs)
بواسطة: SHIM, Kyong Jin, وآخرون
منشور في: (2010) -
Player Performance Prediction in Massively Multiplayer Online Role-Playing Games (MMORPGs)
بواسطة: SHIM, Kyong Jin, وآخرون
منشور في: (2010) -
Team Performance Prediction in Massively Multiplayer Online Role-Playing Games (MMORPGs)
بواسطة: SHIM, Kyong Jin, وآخرون
منشور في: (2010)