Reinforcement learning for strategic airport slot scheduling: Analysis of state observations and reward designs
Due to the NP-hard nature, the strategic airport slot scheduling problem is calling for exploring sub-optimal approaches, such as heuristics and learning-based approaches. Moreover, the continuous increase in air traffic demand requires approaches that can work well in new scenarios. While heuristic...
محفوظ في:
المؤلفون الرئيسيون: | Nguyen-Duy, Anh, Pham, Duc-Thinh, Lye, Jian-Yi, TA, Nguyen Binh Duong |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2024
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/9268 https://ink.library.smu.edu.sg/context/sis_research/article/10268/viewcontent/RL_AirportSlot_CAI_2024_av.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Reinforcement learning for strategic airport slot scheduling: analysis of state observations and reward designs
بواسطة: Nguyen-Duy, Anh, وآخرون
منشور في: (2025) -
Reinforcement learning for collaborative multi-airport slot re-allocation under reduced capacity scenarios
بواسطة: Nguyen-Duy, Anh, وآخرون
منشور في: (2025) -
Unit slots based short-term scheduling for multipurpose batch plants
بواسطة: Susarla, N., وآخرون
منشور في: (2014) -
Hierarchical multi-agent distributed method for automated slot allocation in virtual centralized ATFM
بواسطة: Nguyen, Nhat-Hoang P., وآخرون
منشور في: (2025) -
A hierarchical multi-agent coordinated decision-making for strategic slot allocation
بواسطة: Nguyen, Nhat-Hoang Phan, وآخرون
منشور في: (2024)