G2Face: High-Fidelity Reversible Face Anonymization via generative and geometric priors
Reversible face anonymization, unlike traditional face pixelization, seeks to replace sensitive identity information in facial images with synthesized alternatives, preserving privacy without sacrificing image clarity. Traditional methods, such as encoder-decoder networks, often result in significan...
Saved in:
Main Authors: | YANG, Haoxin, XU, Xuemiao, XU, Cheng, ZHANG, Huaidong, QIN, Jing, WANG, Yi, HENG, Pheng-Ann, Shengfeng HE |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2024
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/9273 https://ink.library.smu.edu.sg/context/sis_research/article/10273/viewcontent/G2Face_av.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Multi-view face synthesis via progressive face flow
由: XU, Yangyang, et al.
出版: (2021) -
ID preserving face super-resolution generative adversarial networks
由: Li, J., et al.
出版: (2021) -
Joint Feature Learning for Face Recognition
由: Lu, Jiwen, et al.
出版: (2016) -
Face recognition using recursive fisher linear discriminant
由: Xiang, C., et al.
出版: (2014) -
Delving deep into pixelized face recovery and defense
由: ZHONG, Zhixuan, et al.
出版: (2022)