Generative semi-supervised graph anomaly detection

This work considers a practical semi-supervised graph anomaly detection (GAD) scenario, where part of the nodes in a graph are known to be normal, contrasting to the extensively explored unsupervised setting with a fully unlabeled graph. We reveal that having access to the normal nodes, even just a...

全面介紹

Saved in:
書目詳細資料
Main Authors: QIAO, Hezhe, WEN, Qingsong, LI, Xiaoli, LIM, Ee-peng, PANG, Guansong
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2024
主題:
GAD
在線閱讀:https://ink.library.smu.edu.sg/sis_research/9763
https://ink.library.smu.edu.sg/context/sis_research/article/10763/viewcontent/10275_Generative_Semi_supervis__1_.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!