On the probability of necessity and sufficiency of explaining Graph Neural Networks: A lower bound optimization approach
The explainability of Graph Neural Networks (GNNs) is critical to various GNN applications, yet it remains a significant challenge. A convincing explanation should be both necessary and sufficient simultaneously. However, existing GNN explaining approaches focus on only one of the two aspects, neces...
محفوظ في:
المؤلفون الرئيسيون: | CAI, Ruichu, ZHU, Yuxuan, CHEN, Xuexin, FANG, Yuan, WU, Min, QIAO, Jie, HAO, Zhifeng |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2025
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/10111 https://ink.library.smu.edu.sg/context/sis_research/article/11111/viewcontent/Prob_Necessity_GNN_sv.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
DEVELOPING A HOLISTIC EXPLAINABLE MACHINE LEARNING FRAMEWORK: DATA SCIENCE APPLICATIONS IN HEALTHCARE
بواسطة: ONG MING LUN
منشور في: (2021) -
Coca: Improving and explaining graph neural network-based vulnerability detection systems
بواسطة: CAO, Sicong, وآخرون
منشور في: (2024) -
TeLLMe what you see: using LLMs to explain neurons in vision models
بواسطة: Guertler, Leon
منشور في: (2024) -
Explainable AI for medical over-investigation identification
بواسطة: Suresh Kumar Rathika
منشور في: (2024) -
Building more explainable artificial intelligence with argumentation
بواسطة: Zeng, Zhiwei, وآخرون
منشور في: (2020)