Low-degree graph partitioning via local search with applications to constraint satisfaction, max cut, and coloring

We present practical algorithms for constructing partitions of graphs into a fixed number of vertex-disjoint subgraphs that satisfy particular degree constraints. We use this in particular to find k-cuts of graphs of maximum degree ∆ that cut at least a k - 1/k (1 + 1/2∆+k-1 ) fraction of the edges,...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Halldorsson, Magnus M., Lau, Hoong Chuin
التنسيق: text
اللغة:English
منشور في: Institutional Knowledge at Singapore Management University 1997
الموضوعات:
الوصول للمادة أونلاين:https://ink.library.smu.edu.sg/sis_research/173
https://ink.library.smu.edu.sg/context/sis_research/article/1172/viewcontent/LauC1997LowDegree_Graph.pdf
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Singapore Management University
اللغة: English
الوصف
الملخص:We present practical algorithms for constructing partitions of graphs into a fixed number of vertex-disjoint subgraphs that satisfy particular degree constraints. We use this in particular to find k-cuts of graphs of maximum degree ∆ that cut at least a k - 1/k (1 + 1/2∆+k-1 ) fraction of the edges, improving previous bounds known. The partitions also apply to constraint networks, for which we give a tight analysis of natural local search heuristics for the maximum constraint satisfaction problem. These partitions also imply efficient approximations for several problems on weighted bounded-degree graphs. In particular, we improve the best performance ratio for the weighted independent set problem to 3/∆+2 , and obtain an efficient algorithm for coloring 3-colorable graphs with at most 3∆+2/4 colors.