Accurately Extracting Coherent Relevant Passages Using Hidden Markov Models
In this paper, we present a principled method for accurately extracting coherent relevant passages of variable lengths using HMMs. We show that with appropriate parameter estimation, the HMM method outperforms a number of strong baseline methods on two data sets.
Saved in:
Main Authors: | JIANG, Jing, ZHAI, ChengXiang |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2005
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/1257 https://ink.library.smu.edu.sg/context/sis_research/article/2256/viewcontent/p289_jiang.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
Extraction of Coherent Relevant Passages using Hidden Markov Models
由: JIANG, Jing, et al.
出版: (2006) -
A Systematic Exploration of the Feature Space for Relation Extraction
由: JIANG, Jing, et al.
出版: (2007) -
Exploiting Domain Structure for Named Entity Recognition
由: JIANG, Jing, et al.
出版: (2006) -
A Two-Stage Approach to Domain Adaptation for Statistical Classifiers
由: JIANG, Jing, et al.
出版: (2007) -
Instance Weighting for Domain Adaptation in NLP
由: JIANG, Jing, et al.
出版: (2007)