Event detection in wireless sensor networks in random spatial sensors deployments

We develop a new class of event detection algorithms in Wireless Sensor Networks where the sensors are randomly deployed spatially. We formulate the detection problem as a binary hypothesis testing problem and design the optimal decision rules for two scenarios, namely the Poisson Point Process and...

全面介紹

Saved in:
書目詳細資料
Main Authors: ZHANG, Pengfei, NEVAT, Ido, PETERS, Gareth W., XIAO, Gaoxi, TAN, Hwee-Pink
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2015
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/2819
https://ink.library.smu.edu.sg/context/sis_research/article/3819/viewcontent/Event_detection_in_wireless_sensor_networks_in_random_av.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:We develop a new class of event detection algorithms in Wireless Sensor Networks where the sensors are randomly deployed spatially. We formulate the detection problem as a binary hypothesis testing problem and design the optimal decision rules for two scenarios, namely the Poisson Point Process and Binomial Point Process random deployments. To calculate the intractable marginal likelihood density, we develop three types of series expansion methods which are based on an Askey-orthogonal polynomials. In addition, we develop a novel framework to provide guidance on which series expansion is most suitable (i.e., most accurate) to use for different system parameters. Extensive Monte Carlo simulations are carried out to illustrate the benefits of this framework as well as the quality of the series expansion methods, and the impacts that different parameters have on detection performance via the Receiver Operating Curves (ROC).