Learning feature dependencies for noise correction in biomedical prediction
The presence of noise or errors in the stated feature values of biomedical data can lead to incorrect prediction. We introduce a Bayesian Network-based Noise Correction framework named BN-NC. After data preprocessing, a Bayesian Network (BN) is learned to capture the feature dependencies. Using the...
محفوظ في:
المؤلفون الرئيسيون: | YAP, Ghim-Eng, TAN, Ah-Hwee, PANG, Hwee Hwa |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2011
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/3661 https://ink.library.smu.edu.sg/context/sis_research/article/4663/viewcontent/YapTanPangHH_2011_LearningFeatureDependNoiseCorrectBiomedical_afv.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Dynamically-optimized context in recommender systems
بواسطة: YAP, Ghim-Eng, وآخرون
منشور في: (2005) -
Discovering Causal Dependencies in Mobile Context-Aware Recommenders
بواسطة: YAP, Ghim-Eng, وآخرون
منشور في: (2006) -
Discovering and Exploiting Causal Dependencies for Robust Mobile Context-Aware Recommenders
بواسطة: YAP, Ghim-Eng, وآخرون
منشور في: (2007) -
A Bayesian approach integrating regional and global features for image semantic learning
بواسطة: NGUYEN, Luong-Dong, وآخرون
منشور في: (2009) -
Learning Causal Models for Noisy Biological Data Mining: An Application to Ovarian Cancer Detection
بواسطة: YAP, Ghim-Eng, وآخرون
منشور في: (2007)