Can syntax help? Improving an LSTM-based Sentence Compression Model for New Domains
In this paper, we study how to improve thedomain adaptability of a deletion-basedLong Short-Term Memory (LSTM) neuralnetwork model for sentence compression.We hypothesize that syntactic informationhelps in making such modelsmore robust across domains. We proposetwo major changes to the model: usinge...
محفوظ في:
المؤلفون الرئيسيون: | , , , , , |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2017
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/3901 https://ink.library.smu.edu.sg/context/sis_research/article/4903/viewcontent/P17_1127.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
الملخص: | In this paper, we study how to improve thedomain adaptability of a deletion-basedLong Short-Term Memory (LSTM) neuralnetwork model for sentence compression.We hypothesize that syntactic informationhelps in making such modelsmore robust across domains. We proposetwo major changes to the model: usingexplicit syntactic features and introducingsyntactic constraints through Integer LinearProgramming (ILP). Our evaluationshows that the proposed model works betterthan the original model as well as a traditionalnon-neural-network-based modelin a cross-domain setting. |
---|