Privacy-preserving mining of association rule on outsourced cloud data from multiple parties
It has been widely recognized as a challenge to carry out data analysis and meanwhile preserve its privacy in the cloud. In this work, we mainly focus on a well-known data analysis approach namely association rule mining. We found that the data privacy in this mining approach have not been well cons...
محفوظ في:
المؤلفون الرئيسيون: | LIU, Lin, SU, Jinshu, CHEN, Rongmao, LIU, Ximeng, WANG, Xiaofeng, CHEN, Shuhui, LEUNG, Ho-fung Fung |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/4086 https://ink.library.smu.edu.sg/context/sis_research/article/5089/viewcontent/Liu2018_Chapter_Privacy_PreservingMiningOfAsso.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Privacy-preserving outsourced calculation toolkit in the cloud
بواسطة: LIU, Ximeng, وآخرون
منشور في: (2020) -
An efficient and privacy-preserving biometric identification scheme in cloud computing
بواسطة: ZHU, Liehuang, وآخرون
منشور في: (2018) -
Preserving Privacy in Association Rule Mining with Bloom Filters
بواسطة: QIU, Ling, وآخرون
منشور في: (2007) -
A new concise representation of frequent itemsets using generators and a positive border
بواسطة: Liu, G., وآخرون
منشور في: (2013) -
Efficient and privacy-preserving online face recognition over encrypted outsourced data
بواسطة: YANG, Xiaopeng, وآخرون
منشور في: (2018)