Learning to self-train for semi-supervised few-shot classification

Few-shot classification (FSC) is challenging due to the scarcity of labeled training data (e.g. only one labeled data point per class). Meta-learning has shown to achieve promising results by learning to initialize a classification model for FSC. In this paper we propose a novel semi-supervised meta...

全面介紹

Saved in:
書目詳細資料
Main Authors: LI, Xinzhe, SUN, Qianru, LIU, Yaoyao, ZHENG, Shibao, ZHOU, Qin, CHUA, Tat-Seng, SCHIELE, Bernt
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2019
主題:
在線閱讀:https://ink.library.smu.edu.sg/sis_research/4445
https://ink.library.smu.edu.sg/context/sis_research/article/5448/viewcontent/NeurIPS_2019_semi_supervised_camera_ready.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Singapore Management University
語言: English