Learning to self-train for semi-supervised few-shot classification
Few-shot classification (FSC) is challenging due to the scarcity of labeled training data (e.g. only one labeled data point per class). Meta-learning has shown to achieve promising results by learning to initialize a classification model for FSC. In this paper we propose a novel semi-supervised meta...
Saved in:
Main Authors: | , , , , , , |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2019
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/4445 https://ink.library.smu.edu.sg/context/sis_research/article/5448/viewcontent/NeurIPS_2019_semi_supervised_camera_ready.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
成為第一個發表評論!