Heuristic collective learning for efficient and robust emergence of social norms
In multiagent systems, social norms is a useful technique in regulating agents’ behaviors to achieve coordination or cooperation among agents. One important research question is to investigate how a desirable social norm can be evolved in a bottom-up manner through local interactions. In this paper,...
Saved in:
Main Authors: | , , , , |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2015
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/4948 https://ink.library.smu.edu.sg/context/sis_research/article/5951/viewcontent/AAMAS15.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
總結: | In multiagent systems, social norms is a useful technique in regulating agents’ behaviors to achieve coordination or cooperation among agents. One important research question is to investigate how a desirable social norm can be evolved in a bottom-up manner through local interactions. In this paper, we propose two novel learning strategies under the collective learning framework: collective learning EV-l and collective learning EV-g, to efficiently facilitate the emergence of social norms. Experimental results show that both learning strategies can support the emergence of desirable social norms more efficiently in a much broader range of multiagent interaction scenarios than previous work, and also are robust across different network topologies. |
---|