Error recovered hierarchical classification
Hierarchical classification (HC) is a popular and efficient way for detecting the semantic concepts from the images. However, the conventional HC, which always selects the branch with the highest classification response to go on, has the risk of propagating serious errors from higher levels of the h...
Saved in:
Main Authors: | , , |
---|---|
Format: | text |
Language: | English |
Published: |
Institutional Knowledge at Singapore Management University
2013
|
Subjects: | |
Online Access: | https://ink.library.smu.edu.sg/sis_research/6517 https://ink.library.smu.edu.sg/context/sis_research/article/7520/viewcontent/2502081.2502182.pdf |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Singapore Management University |
Language: | English |
Summary: | Hierarchical classification (HC) is a popular and efficient way for detecting the semantic concepts from the images. However, the conventional HC, which always selects the branch with the highest classification response to go on, has the risk of propagating serious errors from higher levels of the hierarchy to the lower levels. We argue that the highestresponse-first strategy is too arbitrary, because the candidate nodes are considered individually which ignores the semantic relationship among them. In this paper, we propose a novel method for HC, which is able to utilize the semantic relationship among candidate nodes and their children to recover the responses of unreliable classifiers of the candidate nodes, with the hope of providing the branch selection a more globally valid and semantically consistent view. The experimental results show that the proposed method outperforms the conventional HC methods and achieves a satisfactory balance between the accuracy and efficiency. |
---|