Scaling up multi-agent reinforcement learning in complex domains
TD-FALCON (Temporal Difference - Fusion Architecture for Learning, COgnition, and Navigation) is a class of self-organizing neural networks that incorporates Temporal Difference (TD) methods for real-time reinforcement learning. In this paper, we present two strategies, i.e. policy sharing and neigh...
محفوظ في:
المؤلفون الرئيسيون: | XIAO, Dan, TAN, Ah-hwee |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2008
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/6798 https://ink.library.smu.edu.sg/context/sis_research/article/7801/viewcontent/Scaling_Up_IAT08.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
Self-organizing agents for reinforcement learning in virtual worlds
بواسطة: KANG, Yilin, وآخرون
منشور في: (2010) -
Cooperative reinforcement learning in topology-based multi-agent systems
بواسطة: XIAO, Dan, وآخرون
منشور في: (2011) -
Multi-agent reinforcement learning in spatial domain tasks using inter subtask empowerment rewards
بواسطة: PATERIA, Shubham, وآخرون
منشور في: (2019) -
Scaling up Cooperative Multi-agent Reinforcement Learning Systems
بواسطة: GENG, Minghong
منشور في: (2024) -
Integrating motivated learning and k-winner-take-all to coordinate multi-agent reinforcement learning
بواسطة: TENG, Teck-Hou, وآخرون
منشور في: (2014)