MANDO: Multi-level heterogeneous graph embeddings for fine-grained detection of smart contract vulnerabilities
Learning heterogeneous graphs consisting of different types of nodes and edges enhances the results of homogeneous graph techniques. An interesting example of such graphs is control-flow graphs representing possible software code execution flows. As such graphs represent more semantic information of...
محفوظ في:
المؤلفون الرئيسيون: | NGUYEN, Huu Hoang, NGUYEN, Nhat Minh, XIE, Chunyao, AHMADI, Zahra, KUDENKO, Daniel, DOAN, Thanh Nam, JIANG, Lingxiao |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/7627 https://ink.library.smu.edu.sg/context/sis_research/article/8630/viewcontent/dsaa22mando.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
المؤسسة: | Singapore Management University |
اللغة: | English |
مواد مشابهة
-
MANDO-GURU: vulnerability detection for smart contract source code by heterogeneous graph embeddings
بواسطة: NGUYEN, Huu Hoang, وآخرون
منشور في: (2022) -
MANDO-HGT: Heterogeneous graph transformers for smart contract vulnerability detection
بواسطة: NGUYEN, Huu Hoang, وآخرون
منشور في: (2023) -
Fine-grained in-context permission classification for Android apps using control-flow graph embedding
بواسطة: MALVIYA, Vikas Kumar, وآخرون
منشور في: (2023) -
Heterogeneous graph neural network with multi-view representation learning
بواسطة: SHAO, Zezhi, وآخرون
منشور في: (2023) -
Checking smart contracts with structural code embedding
بواسطة: GAO, Zhipeng, وآخرون
منشور في: (2021)