MANDO: Multi-level heterogeneous graph embeddings for fine-grained detection of smart contract vulnerabilities
Learning heterogeneous graphs consisting of different types of nodes and edges enhances the results of homogeneous graph techniques. An interesting example of such graphs is control-flow graphs representing possible software code execution flows. As such graphs represent more semantic information of...
Saved in:
Main Authors: | NGUYEN, Huu Hoang, NGUYEN, Nhat Minh, XIE, Chunyao, AHMADI, Zahra, KUDENKO, Daniel, DOAN, Thanh Nam, JIANG, Lingxiao |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2022
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/7627 https://ink.library.smu.edu.sg/context/sis_research/article/8630/viewcontent/dsaa22mando.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Singapore Management University |
語言: | English |
相似書籍
-
MANDO-GURU: vulnerability detection for smart contract source code by heterogeneous graph embeddings
由: NGUYEN, Huu Hoang, et al.
出版: (2022) -
MANDO-HGT: Heterogeneous graph transformers for smart contract vulnerability detection
由: NGUYEN, Huu Hoang, et al.
出版: (2023) -
Fine-grained in-context permission classification for Android apps using control-flow graph embedding
由: MALVIYA, Vikas Kumar, et al.
出版: (2023) -
Heterogeneous graph neural network with multi-view representation learning
由: SHAO, Zezhi, et al.
出版: (2023) -
Checking smart contracts with structural code embedding
由: GAO, Zhipeng, et al.
出版: (2021)