Detecting personal intake of medicine from Twitter

Mining social media messages such as tweets, blogs, and Facebook posts for health and drug related information has received significant interest in pharmacovigilance research. Social media sites (e.g., Twitter), have been used for monitoring drug abuse, adverse reactions to drug usage, and analyzing...

Full description

Saved in:
Bibliographic Details
Main Authors: MAHATA, Debanjan, FRIEDRICHS, Jasper, SHAH, Rajiv Ratn, JIANG, Jing
Format: text
Language:English
Published: Institutional Knowledge at Singapore Management University 2018
Subjects:
Online Access:https://ink.library.smu.edu.sg/sis_research/7765
https://ink.library.smu.edu.sg/context/sis_research/article/8768/viewcontent/IntakeMedicine_Twitter_av.pdf
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Singapore Management University
Language: English
Description
Summary:Mining social media messages such as tweets, blogs, and Facebook posts for health and drug related information has received significant interest in pharmacovigilance research. Social media sites (e.g., Twitter), have been used for monitoring drug abuse, adverse reactions to drug usage, and analyzing expression of sentiments related to drugs. Most of these studies are based on aggregated results from a large population rather than specific sets of individuals. In order to conduct studies at an individual level or specific groups of people, identifying posts mentioning intake of medicine by the user is necessary. Toward this objective we develop a classifier for identifying mentions of personal intake of medicine in tweets. We train a stacked ensemble of shallow convolutional neural network (CNN) models on an annotated dataset. We use random search for tuning the hyper-parameters of the CNN models and present an ensemble of best models for the prediction task. Our system produces state-of-the-art results, with a micro-averaged F-score of 0.693. We believe that the developed classifier has direct uses in the areas of psychology, health informatics, pharmacovigilance, and affective computing for tracking moods, emotions, and sentiments of patients expressing intake of medicine in social media.