Learning generalizable models for vehicle routing problems via knowledge distillation
Recent neural methods for vehicle routing problems always train and test the deep models on the same instance distribution (i.e., uniform). To tackle the consequent cross-distribution generalization concerns, we bring the knowledge distillation to this field and propose an Adaptive Multi-Distributio...
محفوظ في:
المؤلفون الرئيسيون: | BI, Jieyi, MA, Yining, WANG, Jiahai, CAO, Zhiguang, CHEN, Jinbiao, SUN, Yuan, CHEE, Yeow Meng |
---|---|
التنسيق: | text |
اللغة: | English |
منشور في: |
Institutional Knowledge at Singapore Management University
2022
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://ink.library.smu.edu.sg/sis_research/8164 https://ink.library.smu.edu.sg/context/sis_research/article/9167/viewcontent/NeurIPS_2022_learning_generalizable_models_for_vehicle_routing_problems_via_knowledge_distillation_Paper_Conference.pdf |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Multi-view graph contrastive learning for solving vehicle routing problems
بواسطة: JIANG, Yuan, وآخرون
منشور في: (2023) -
Learning generalizable heuristics for solving vehicle routing problem under distribution shift
بواسطة: Jiang, Yuan
منشور في: (2024) -
Multi-Agent Cooperative Vehicle Routing
بواسطة: Seshadri, Madhavan
منشور في: (2017) -
Learning feature embedding refiner for solving vehicle routing problems
بواسطة: LI, Jingwen, وآخرون
منشور في: (2023) -
A memetic approach to vehicle routing problem with dynamic requests
بواسطة: Mańdziuk, Jacek, وآخرون
منشور في: (2017)