Learning generalizable models for vehicle routing problems via knowledge distillation
Recent neural methods for vehicle routing problems always train and test the deep models on the same instance distribution (i.e., uniform). To tackle the consequent cross-distribution generalization concerns, we bring the knowledge distillation to this field and propose an Adaptive Multi-Distributio...
Saved in:
Main Authors: | BI, Jieyi, MA, Yining, WANG, Jiahai, CAO, Zhiguang, CHEN, Jinbiao, SUN, Yuan, CHEE, Yeow Meng |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2022
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/sis_research/8164 https://ink.library.smu.edu.sg/context/sis_research/article/9167/viewcontent/NeurIPS_2022_learning_generalizable_models_for_vehicle_routing_problems_via_knowledge_distillation_Paper_Conference.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Multi-view graph contrastive learning for solving vehicle routing problems
由: JIANG, Yuan, et al.
出版: (2023) -
Learning generalizable heuristics for solving vehicle routing problem under distribution shift
由: Jiang, Yuan
出版: (2024) -
Multi-Agent Cooperative Vehicle Routing
由: Seshadri, Madhavan
出版: (2017) -
Learning feature embedding refiner for solving vehicle routing problems
由: LI, Jingwen, et al.
出版: (2023) -
A memetic approach to vehicle routing problem with dynamic requests
由: Mańdziuk, Jacek, et al.
出版: (2017)