Bounded Solutions of the Equation ?U = Pu on a Riemannian Manifold
Given a nonnegative C1-function p(x) on a Riemannian manifold R, denote by Bp(R) the Banach space of all bounded C2-solutions of Î u = pu with the sup-norm. The purpose of this paper is to give a unified treatment of Bp(R) on the Wiener compactification for all densities p(x). This approach not only...
Saved in:
主要作者: | Kwon, Young Koan |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
1974
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/soa_research/667 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Bounded Energy-Finite Solutions of Delta U=Pu on a Riemannian Manifold
由: KWON, Young Koan, et al.
出版: (1971) -
Counterexamples for the Space of Minimal Solutions of the Equation? U = Pu on a Riemann Surface
由: KWON, Young Koan, et al.
出版: (1974) -
Harmonic Functions on Subregion of a Riemannian Manifold
由: KWON, Young Koan, et al.
出版: (1971) -
A Maximum Principle for Bounded Harmonic Functions on Riemannian Spaces
由: KWON, Young Koan, et al.
出版: (1970) -
The P-Harmonic Boundary and Energy-Finite Solutions of Delta U=Pu
由: KWON, Young Koan, et al.
出版: (1971)