Optimal inference for spot regressions
Betas from return regressions are commonly used to measure systematic financial market risks. "Good" beta measurements are essential for a range of empirical inquiries in finance and macroeconomics. We introduce a novel econometric framework for the nonparametric estimation of time-varying...
Saved in:
Main Authors: | , , |
---|---|
格式: | text |
語言: | English |
出版: |
Institutional Knowledge at Singapore Management University
2024
|
主題: | |
在線閱讀: | https://ink.library.smu.edu.sg/soe_research/2645 https://ink.library.smu.edu.sg/context/soe_research/article/3644/viewcontent/OptimalInferenceSpotRegressions_sv.pdf |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
總結: | Betas from return regressions are commonly used to measure systematic financial market risks. "Good" beta measurements are essential for a range of empirical inquiries in finance and macroeconomics. We introduce a novel econometric framework for the nonparametric estimation of time-varying betas with high-frequency data. The "local Gaussian" property of the generic continuous-time benchmark model enables optimal "finite-sample" inference in a well-defined sense. It also affords more reliable inference in empirically realistic settings compared to conventional large-sample approaches. Two applications pertaining to the tracking performance of leveraged ETFs and an intraday event study illustrate the practical usefulness of the new procedures. |
---|