Asymptotic theory for explosive fractional Ornstein–Uhlenbeck processes

This paper proposes estimators for the parameters of an explosive fractional Ornstein-Uhlenbeck process. The asymptotic properties for the diffusion estimators are developed under the in-fill asymptotic scheme, while the asymptotic properties for the drift estimators are developed under the double a...

全面介紹

Saved in:
書目詳細資料
Main Authors: JIANG, Hui, PAN, Yajuan, LIAO, Weilin, YANG, Qingshan, Jun YU
格式: text
語言:English
出版: Institutional Knowledge at Singapore Management University 2023
主題:
在線閱讀:https://ink.library.smu.edu.sg/soe_research/2675
https://ink.library.smu.edu.sg/context/soe_research/article/3674/viewcontent/ExplosiveFOU_V22.pdf
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
id sg-smu-ink.soe_research-3674
record_format dspace
spelling sg-smu-ink.soe_research-36742023-04-04T05:39:50Z Asymptotic theory for explosive fractional Ornstein–Uhlenbeck processes JIANG, Hui PAN, Yajuan LIAO, Weilin YANG, Qingshan Jun YU, This paper proposes estimators for the parameters of an explosive fractional Ornstein-Uhlenbeck process. The asymptotic properties for the diffusion estimators are developed under the in-fill asymptotic scheme, while the asymptotic properties for the drift estimators are developed under the double asymptotic scheme for the full range of the Hurst parameter. Simulation results demonstrate the effectiveness of the proposed estimators, and the asymptotic distributions provide a good approximation in finite samples. Empirical applications are presented to demonstrate the model’s usefulness and the practical value of the asymptotic theory. 2023-03-01T08:00:00Z text application/pdf https://ink.library.smu.edu.sg/soe_research/2675 https://ink.library.smu.edu.sg/context/soe_research/article/3674/viewcontent/ExplosiveFOU_V22.pdf http://creativecommons.org/licenses/by-nc-nd/4.0/ Research Collection School Of Economics eng Institutional Knowledge at Singapore Management University Explosive process Hurst parameter Long memory Anti-persistency Double asymptotics In-fill asymptotics Econometrics
institution Singapore Management University
building SMU Libraries
continent Asia
country Singapore
Singapore
content_provider SMU Libraries
collection InK@SMU
language English
topic Explosive process
Hurst parameter
Long memory
Anti-persistency
Double asymptotics
In-fill asymptotics
Econometrics
spellingShingle Explosive process
Hurst parameter
Long memory
Anti-persistency
Double asymptotics
In-fill asymptotics
Econometrics
JIANG, Hui
PAN, Yajuan
LIAO, Weilin
YANG, Qingshan
Jun YU,
Asymptotic theory for explosive fractional Ornstein–Uhlenbeck processes
description This paper proposes estimators for the parameters of an explosive fractional Ornstein-Uhlenbeck process. The asymptotic properties for the diffusion estimators are developed under the in-fill asymptotic scheme, while the asymptotic properties for the drift estimators are developed under the double asymptotic scheme for the full range of the Hurst parameter. Simulation results demonstrate the effectiveness of the proposed estimators, and the asymptotic distributions provide a good approximation in finite samples. Empirical applications are presented to demonstrate the model’s usefulness and the practical value of the asymptotic theory.
format text
author JIANG, Hui
PAN, Yajuan
LIAO, Weilin
YANG, Qingshan
Jun YU,
author_facet JIANG, Hui
PAN, Yajuan
LIAO, Weilin
YANG, Qingshan
Jun YU,
author_sort JIANG, Hui
title Asymptotic theory for explosive fractional Ornstein–Uhlenbeck processes
title_short Asymptotic theory for explosive fractional Ornstein–Uhlenbeck processes
title_full Asymptotic theory for explosive fractional Ornstein–Uhlenbeck processes
title_fullStr Asymptotic theory for explosive fractional Ornstein–Uhlenbeck processes
title_full_unstemmed Asymptotic theory for explosive fractional Ornstein–Uhlenbeck processes
title_sort asymptotic theory for explosive fractional ornstein–uhlenbeck processes
publisher Institutional Knowledge at Singapore Management University
publishDate 2023
url https://ink.library.smu.edu.sg/soe_research/2675
https://ink.library.smu.edu.sg/context/soe_research/article/3674/viewcontent/ExplosiveFOU_V22.pdf
_version_ 1770576520405843968