Boundary detection in medical images using edge following algorithm based on intensity gradient and texture gradient features

Finding the correct boundary in noisy images is still a difficult task. This paper introduces a new edge following technique for boundary detection in noisy images. Utilization of the proposed technique is exhibited via its application to various types of medical images. Our proposed technique can d...

全面介紹

Saved in:
書目詳細資料
Main Authors: Somkantha K., Theera-Umpon N., Auephanwiriyakul S.
格式: Article
語言:English
出版: 2014
在線閱讀:http://www.scopus.com/inward/record.url?eid=2-s2.0-79952158160&partnerID=40&md5=dbab88e8511379c002db24df27ca924f
http://www.ncbi.nlm.nih.gov/pubmed/21062676
http://cmuir.cmu.ac.th/handle/6653943832/1421
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
語言: English
實物特徵
總結:Finding the correct boundary in noisy images is still a difficult task. This paper introduces a new edge following technique for boundary detection in noisy images. Utilization of the proposed technique is exhibited via its application to various types of medical images. Our proposed technique can detect the boundaries of objects in noisy images using the information from the intensity gradient via the vector image model and the texture gradient via the edge map. The performance and robustness of the technique have been tested to segment objects in synthetic noisy images and medical images including prostates in ultrasound images, left ventricles in cardiac magnetic resonance (MR) images, aortas in cardiovascular MR images, and knee joints in computerized tomography images. We compare the proposed segmentation technique with the active contour models (ACM), geodesic active contour models, active contours without edges, gradient vector flow snake models, and ACMs based on vector field convolution, by using the skilled doctors' opinions as the ground truths. The results show that our technique performs very well and yields better performance than the classical contour models. The proposed method is robust and applicable on various kinds of noisy images without prior knowledge of noise properties. © 2006 IEEE.