Power quality problem classification using wavelet transformation and artificial neural networks

This paper presents a classification method for power quality problems in electrical power systems. To improve the electric power quality, sources of disturbances must be known and controlled. Power quality disturbance waveform recognition is often troublesome because it involves a broad range of di...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Kanitpanyacharoean W., Premrudeepreechacharn S.
التنسيق: Conference or Workshop Item
اللغة:English
منشور في: 2014
الوصول للمادة أونلاين:http://www.scopus.com/inward/record.url?eid=2-s2.0-27944492026&partnerID=40&md5=cfbdfeb8002176874c1582c06e5646fb
http://cmuir.cmu.ac.th/handle/6653943832/1510
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Chiang Mai University
اللغة: English
الوصف
الملخص:This paper presents a classification method for power quality problems in electrical power systems. To improve the electric power quality, sources of disturbances must be known and controlled. Power quality disturbance waveform recognition is often troublesome because it involves a broad range of disturbance categories or classes. This is a study of power quality problem classification using wavelet transformation and artificial neural networks. After training neural networks, the weight and bias is obtained for using to classify the power quality problems. The combined wavelet transformation with neural networks is able to classify all 6 types for power quality problems correctly. ©2004IEEE.