Artificial neural network modeling of ferroelectric hysteresis: an application to soft lead zirconate titanate ceramics

In this work, the Artificial Neural Network (ANN) was used to model ferroelectric hysteresis using data measured from soft lead zirconate titanate [Pb (Zr1-xTix)O3 or PZT] ceramics as an application. Data from experiments were split into training, testing and validation dataset. Four ANN models were...

全面介紹

Saved in:
書目詳細資料
Main Authors: Laosiritaworn W., Yimnirun R., Laosiritaworn Y.
格式: Conference or Workshop Item
語言:English
出版: 2014
在線閱讀:http://www.scopus.com/inward/record.url?eid=2-s2.0-75749083667&partnerID=40&md5=e72a567d823ac5f18ef97b033aebe2e8
http://cmuir.cmu.ac.th/handle/6653943832/1519
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
語言: English
實物特徵
總結:In this work, the Artificial Neural Network (ANN) was used to model ferroelectric hysteresis using data measured from soft lead zirconate titanate [Pb (Zr1-xTix)O3 or PZT] ceramics as an application. Data from experiments were split into training, testing and validation dataset. Four ANN models were developed separately to predict output of the hysteresis area, remnant, coercivity and squareness. Each model has two neurons in the input layer, which represent field amplitude and field frequency. The ANNs were trained with varying number of hidden layer and number of neurons in each layer to find the best network architecture with highest accuracy. After the networks have been trained, they were used to predict hysteresis properties of the unseen testing patterns of input. The predicted and the testing data were found to match very well which suggests the ANN success in modeling ferroelectric hysteresis properties obtained from experiments. © (2010) Trans Tech Publications.