Prediction of future observations using belief functions: A likelihood-based approach

© 2015 Elsevier Inc. All rights reserved. We study a new approach to statistical prediction in the Dempster-Shafer framework. Given a parametric model, the random variable to be predicted is expressed as a function of the parameter and a pivotal random variable. A consonant belief function in the pa...

全面介紹

Saved in:
書目詳細資料
Main Authors: Kanjanatarakul O., Denœux T., Sriboonchitta S.
格式: 雜誌
出版: 2017
在線閱讀:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84962822288&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/41915
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
id th-cmuir.6653943832-41915
record_format dspace
spelling th-cmuir.6653943832-419152017-09-28T04:24:08Z Prediction of future observations using belief functions: A likelihood-based approach Kanjanatarakul O. Denœux T. Sriboonchitta S. © 2015 Elsevier Inc. All rights reserved. We study a new approach to statistical prediction in the Dempster-Shafer framework. Given a parametric model, the random variable to be predicted is expressed as a function of the parameter and a pivotal random variable. A consonant belief function in the parameter space is constructed from the likelihood function, and combined with the pivotal distribution to yield a predictive belief function that quantifies the uncertainty about the future data. The method boils down to Bayesian prediction when a probabilistic prior is available. The asymptotic consistency of the method is established in the iid case, under some assumptions. The predictive belief function can be approximated to any desired accuracy using Monte Carlo simulation and nonlinear optimization. As an illustration, the method is applied to multiple linear regression. 2017-09-28T04:24:08Z 2017-09-28T04:24:08Z 2016-05-01 Journal 0888613X 2-s2.0-84962822288 10.1016/j.ijar.2015.12.004 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84962822288&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/41915
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
description © 2015 Elsevier Inc. All rights reserved. We study a new approach to statistical prediction in the Dempster-Shafer framework. Given a parametric model, the random variable to be predicted is expressed as a function of the parameter and a pivotal random variable. A consonant belief function in the parameter space is constructed from the likelihood function, and combined with the pivotal distribution to yield a predictive belief function that quantifies the uncertainty about the future data. The method boils down to Bayesian prediction when a probabilistic prior is available. The asymptotic consistency of the method is established in the iid case, under some assumptions. The predictive belief function can be approximated to any desired accuracy using Monte Carlo simulation and nonlinear optimization. As an illustration, the method is applied to multiple linear regression.
format Journal
author Kanjanatarakul O.
Denœux T.
Sriboonchitta S.
spellingShingle Kanjanatarakul O.
Denœux T.
Sriboonchitta S.
Prediction of future observations using belief functions: A likelihood-based approach
author_facet Kanjanatarakul O.
Denœux T.
Sriboonchitta S.
author_sort Kanjanatarakul O.
title Prediction of future observations using belief functions: A likelihood-based approach
title_short Prediction of future observations using belief functions: A likelihood-based approach
title_full Prediction of future observations using belief functions: A likelihood-based approach
title_fullStr Prediction of future observations using belief functions: A likelihood-based approach
title_full_unstemmed Prediction of future observations using belief functions: A likelihood-based approach
title_sort prediction of future observations using belief functions: a likelihood-based approach
publishDate 2017
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84962822288&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/41915
_version_ 1681422090721296384