Interior fixed points of unit-sphere-preserving Euclidean maps

Schirmer proved that there is a class of smooth self-maps of the unit sphere in Euclidean n-space with the property that any smooth self-map of the unit ball that extends a map of that class must have at least one fixed point in the interior of the ball. We generalize Schirmer's result by provi...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Khamsemanan N., Brown R., Lee C., Dhompongsa S.
التنسيق: دورية
منشور في: 2017
الوصول للمادة أونلاين:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84902592555&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/42928
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Chiang Mai University
الوصف
الملخص:Schirmer proved that there is a class of smooth self-maps of the unit sphere in Euclidean n-space with the property that any smooth self-map of the unit ball that extends a map of that class must have at least one fixed point in the interior of the ball. We generalize Schirmer's result by proving that a smooth self-map of Euclidean n-space that extends a self-map of the unit sphere of that class must have at least one fixed point in the interior of the unit ball. © 2012 Khamsemanan et al.; licensee Springer.