Electricity load classification using K-means clustering algorithm

K-means clustering method is applied to classify electricity load data into five groups. The load groups are super-peak, peak, cycling, intermediate, and base. On the other hand, when only three groups are needed, the peak load is combined with the cycling load and the intermediate load is combined...

全面介紹

Saved in:
書目詳細資料
主要作者: Somboon Nuchprayoon
格式: Conference Proceeding
出版: 2018
在線閱讀:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84949986766&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/45401
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
實物特徵
總結:K-means clustering method is applied to classify electricity load data into five groups. The load groups are super-peak, peak, cycling, intermediate, and base. On the other hand, when only three groups are needed, the peak load is combined with the cycling load and the intermediate load is combined with the base load. The classification is performed both on annual basis and seasonal basis and shown by using load duration curves. The attributes of load group are load level and duration. The proposed method has been implemented by using statistical analysis software SPSS and tested with the hourly generation data of Thailand during 2009-2011.