Incorporating SIFT with hard C-means algorithm
The scale invariant feature transform (SIFT) has been used widely as a tool in object recognition. However, when there are several keyframes for one object in the training database, the number of keypoint descriptors for that object might be huge. The matching process of a test keypoint has to be do...
Saved in:
Main Authors: | Wattanapong Suttapak, Sansanee Auephanwiriyakul, Nipon Theera-Umpon |
---|---|
格式: | Conference Proceeding |
出版: |
2018
|
主題: | |
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=77952635713&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/50728 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
-
Incorporating SIFT with hard C-means algorithm
由: Suttapak W., et al.
出版: (2014) -
Thai sign language translation using scale invariant feature transform and hidden markov models
由: Sansanee Auephanwiriyakul, et al.
出版: (2018) -
Thai sign language translation using Fuzzy C-Means and scale invariant feature transform
由: Suwannee Phitakwinai, et al.
出版: (2018) -
Thai sign language translation system using upright speed-up robust feature and c-means clustering
由: Phonkrit Chanda, et al.
出版: (2018) -
Dental fluorosis classification using multi-prototypes from fuzzy C-means clustering
由: Uklid Yeesarapat, et al.
出版: (2018)