The evidence-theoretic k-NN rule for rank-ordered data: Application to predict an individual’s source of loan

© Springer International Publishing Switzerland 2014. We adapted the nonparametric evidence-theoretic k-Nearest Neighbor (k-NN) rule,whichwas originally designed formultinomial choice data, to rank-ordered choice data.The contribution of thismodel is its ability to extract information from all the o...

全面介紹

Saved in:
書目詳細資料
Main Authors: Supanika Leurcharusmee, Peerapat Jatukannyaprateep, Songsak Sriboonchitta, Thierry Denoeux
格式: Book Series
出版: 2018
主題:
在線閱讀:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84921510354&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/53433
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:© Springer International Publishing Switzerland 2014. We adapted the nonparametric evidence-theoretic k-Nearest Neighbor (k-NN) rule,whichwas originally designed formultinomial choice data, to rank-ordered choice data.The contribution of thismodel is its ability to extract information from all the observed rankings to improve the prediction power for each individual’s primary choice. The evidence-theoretic k-NNrule for heterogeneous rank-ordered datamethod can be consistently applied to complete and partial rank-ordered choice data. This model was used to predict an individual’s source of loan given his or her characteristics and also identify individual characteristics that help the prediction. The results show that the prediction from the rank-ordered choice model outperforms that of the traditionalmultinomial choicemodelwith only one observed choice.