Influence of nanogold additives on phase formation, microstructure and dielectric properties of perovskite BaTiO<inf>3</inf>ceramics

© 2015, Springer-Verlag Berlin Heidelberg. The formation of perovskite phase, microstructure and dielectric properties of nanogold-modified barium titanate (BaTiO3) ceramics was examined as a function of gold nanoparticle contents by employing a combination of X-ray diffraction, scanning electron mi...

全面介紹

Saved in:
書目詳細資料
Main Authors: Jeeranan Nonkumwong, Supon Ananta, Laongnuan Srisombat
格式: 雜誌
出版: 2018
主題:
在線閱讀:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84939953160&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/54291
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
機構: Chiang Mai University
實物特徵
總結:© 2015, Springer-Verlag Berlin Heidelberg. The formation of perovskite phase, microstructure and dielectric properties of nanogold-modified barium titanate (BaTiO3) ceramics was examined as a function of gold nanoparticle contents by employing a combination of X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray, Archimedes principle and dielectric measurement techniques. These ceramics were fabricated from a simple mixed-oxide method. The amount of gold nanoparticles was found to be one of the key factors controlling densification, grain growth and dielectric response in BaTiO3ceramics. It was found that under suitable amount of nanogold addition (4 mol%), highly dense perovskite BaTiO3ceramics with homogeneous microstructures of refined grains (~0.5–3.1 μm) and excellence dielectric properties can be produced.