EMG pattern classification by split and merge deep belief network
© 2016 by the authors. In this paper; we introduce an enhanced electromyography (EMG) pattern recognition algorithm based on a split-and-merge deep belief network (SM-DBN). Generally, it is difficult to classify the EMG features because the EMG signal has nonlinear and time-varying characteristics....
Saved in:
Main Authors: | Hyeon Min Shim, Hongsub An, Sanghyuk Lee, Eung Hyuk Lee, Hong Ki Min, Sangmin Lee |
---|---|
格式: | 雜誌 |
出版: |
2018
|
主題: | |
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85003844960&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55487 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Chiang Mai University |
相似書籍
-
EMG pattern classification by split and merge deep belief network
由: Shim H., et al.
出版: (2017) -
Splitting and merging of Görtler vortices
由: Mitsudharmadi, H., et al.
出版: (2014) -
Thermal characterization of longitudinal merging of turbulent spots
由: Sudarat Srichan, et al.
出版: (2018) -
A split-merge framework for comparing clusterings
由: Xiang, Qiaoliang
出版: (2013) -
Real-time classification and recognition of EEG/EMG signals for BCI
由: Lee, Vic Son
出版: (2017)