Membership functions representing a number vs. representing a set: Proof of unique reconstruction
© 2016 IEEE. In some cases, a membership function μ(x) represents an unknown number, but in many other cases, it represents an unknown crisp set. In this case, for each crisp set S, we can estimate the degree μ(S) to which this set S is the desired one. A natural question is: once we know the values...
محفوظ في:
المؤلفون الرئيسيون: | Hung T. Nguyen, Vladik Kreinovich, Olga Kosheleva |
---|---|
التنسيق: | وقائع المؤتمر |
منشور في: |
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006725079&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/55936 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Membership functions representing a number vs. representing a set: Proof of unique reconstruction
بواسطة: Nguyen H., وآخرون
منشور في: (2017) -
How to fully represent expert information about imprecise properties in a computer system: Random sets, fuzzy sets, and beyond: An overview
بواسطة: Hung T. Nguyen, وآخرون
منشور في: (2018) -
How to fully represent expert information about imprecise properties in a computer system: Random sets, fuzzy sets, and beyond: An overview
بواسطة: Hung T. Nguyen, وآخرون
منشور في: (2018) -
"and"- and "or"-operations for "double", "triple", etc. fuzzy sets
بواسطة: Hung T. Nguyen, وآخرون
منشور في: (2018) -
Preferences (Partial pre-orders) on complex numbers – In view of possible use in quantum econometrics
بواسطة: Songsak Sriboonchitta, وآخرون
منشور في: (2019)