Using community preference for overcoming sparsity and cold-start problems in collaborative filtering system offering soft ratings
© 2017 Elsevier B.V. This paper introduces a new collaborative filtering recommender system that is capable of offering soft ratings as well as integrating with a social network containing all users. Offering soft ratings is known as a new methodology for modeling subjective, qualitative, and imperf...
محفوظ في:
المؤلفون الرئيسيون: | Van Doan Nguyen, Songsak Sriboonchitta, Van Nam Huynh |
---|---|
التنسيق: | دورية |
منشور في: |
2018
|
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85032000382&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/56854 |
الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Using community preference for overcoming sparsity and cold-start problems in collaborative filtering system offering soft ratings
بواسطة: Van Doan Nguyen, وآخرون
منشور في: (2018) -
Integrating Community Context Information Into a Reliably Weighted Collaborative Filtering System Using Soft Ratings
بواسطة: Van Doan Nguyen, وآخرون
منشور في: (2018) -
Integrating Community Context Information Into a Reliably Weighted Collaborative Filtering System Using Soft Ratings
بواسطة: Van Doan Nguyen, وآخرون
منشور في: (2018) -
Exploiting ratings and trust to resolve the data sparsity and cold start of recommender systems
بواسطة: Guo, Guibing
منشور في: (2015) -
Design collaborative filtering recommender systems to solve cold-start problem
بواسطة: Hasan Mohammad Yusuf
منشور في: (2022)