Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk

© 2016, Springer International Publishing. Möbius addition is defined on the complex open unit disk by (Formula presented.) and Möbius’s exponential equation takes the form L(a⊕Mb) = L(a) L(b) , where L is a complex-valued function defined on the complex unit disk. In the present article, we indicat...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلفون الرئيسيون: Teerapong Suksumran, Keng Wiboonton
التنسيق: دورية
منشور في: 2018
الموضوعات:
الوصول للمادة أونلاين:https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006489520&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57516
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
id th-cmuir.6653943832-57516
record_format dspace
spelling th-cmuir.6653943832-575162018-09-05T03:44:49Z Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk Teerapong Suksumran Keng Wiboonton Mathematics © 2016, Springer International Publishing. Möbius addition is defined on the complex open unit disk by (Formula presented.) and Möbius’s exponential equation takes the form L(a⊕Mb) = L(a) L(b) , where L is a complex-valued function defined on the complex unit disk. In the present article, we indicate how Möbius’s exponential equation is connected to Cauchy’s exponential equation. Möbius’s exponential equation arises when one determines the irreducible linear representations of the unit disk equipped with Möbius addition, considered as a nonassociative group-like structure. This suggests studying Schur’s lemma in a more general setting. 2018-09-05T03:44:49Z 2018-09-05T03:44:49Z 2017-06-01 Journal 00019054 2-s2.0-85006489520 10.1007/s00010-016-0452-9 https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006489520&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/57516
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
topic Mathematics
spellingShingle Mathematics
Teerapong Suksumran
Keng Wiboonton
Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk
description © 2016, Springer International Publishing. Möbius addition is defined on the complex open unit disk by (Formula presented.) and Möbius’s exponential equation takes the form L(a⊕Mb) = L(a) L(b) , where L is a complex-valued function defined on the complex unit disk. In the present article, we indicate how Möbius’s exponential equation is connected to Cauchy’s exponential equation. Möbius’s exponential equation arises when one determines the irreducible linear representations of the unit disk equipped with Möbius addition, considered as a nonassociative group-like structure. This suggests studying Schur’s lemma in a more general setting.
format Journal
author Teerapong Suksumran
Keng Wiboonton
author_facet Teerapong Suksumran
Keng Wiboonton
author_sort Teerapong Suksumran
title Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk
title_short Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk
title_full Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk
title_fullStr Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk
title_full_unstemmed Möbius’s functional equation and Schur’s lemma with applications to the complex unit disk
title_sort möbius’s functional equation and schur’s lemma with applications to the complex unit disk
publishDate 2018
url https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85006489520&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/57516
_version_ 1681424893309091840