Bayesian empirical likelihood estimation for kink regression with unknown threshold
© Springer International Publishing AG 2018. Bayesian inference provides a flexible way of combining data with prior information from our knowledge. However, Bayesian estimation is very sensitive to the likelihood. We need to evaluate the likelihood density, which is difficult to evaluate, in order...
Saved in:
Main Authors: | Woraphon Yamaka, Pathairat Pastpipatkul, Songsak Sriboonchitta |
---|---|
格式: | Book Series |
出版: |
2018
|
主題: | |
在線閱讀: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85037863242&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/58520 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
相似書籍
相似書籍
-
Bayesian empirical likelihood estimation for kink regression with unknown threshold
由: Woraphon Yamaka, et al.
出版: (2018) -
Expectile and quantile kink regressions with unknown threshold
由: Varith Pipitpojanakarn, et al.
出版: (2018) -
Bayesian empirical likelihood estimation of smooth kink regression
由: Woraphon Yamaka, et al.
出版: (2019) -
Expectile and quantile kink regressions with unknown threshold
由: Varith Pipitpojanakarn, et al.
出版: (2018) -
Predictive recursion maximum likelihood of threshold autoregressive model
由: Pathairat Pastpipatkul, et al.
出版: (2018)