การประมาณราคาก่อสร้างบ้านพักอาศัยโดยเทคนิคโครงข่ายประสาทเทียม

This independent study aims to study on the efficiency of cost prediction of less than 2-story houses in Thailand using Artificial Neural Network Technique. The study done by modeling a cost predictive model by using 8 types of functional area of house as inputs of artificial neural netw...

Full description

Saved in:
Bibliographic Details
Main Author: วิศว์ ดวงแสงทอง
Other Authors: ชยานนท์ หรรษภิญโญ
Format: Independent Study
Published: เชียงใหม่ : บัณฑิตวิทยาลัย มหาวิทยาลัยเชียงใหม่ 2020
Subjects:
Online Access:http://cmuir.cmu.ac.th/jspui/handle/6653943832/69279
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Description
Summary:This independent study aims to study on the efficiency of cost prediction of less than 2-story houses in Thailand using Artificial Neural Network Technique. The study done by modeling a cost predictive model by using 8 types of functional area of house as inputs of artificial neural network. Training of the model done on 50 samples of no more than 2 stories houses. Using the model to estimate house price in comparison to regression analysis technique. Results of the study showing that the Artificial Neural Network technique is more accurate than regression analysis technique. Moreover, Artificial Neural Network technique also can be uses in various size of houses. While regression analysis has limited use on specific range of sizing of houses.