Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients

Background: The recognition that human tumors stimulate the production of autoantibodies has initiated the use of this immune response as serological markers for the early diagnosis and management of cancer. The enzyme-linked immunosorbent assay (ELISA) is the most common method used in detecting au...

Full description

Saved in:
Bibliographic Details
Main Authors: Cressey R., Pimpa S., Chewaskulyong B., Lertprasertsuke N., Saeteng S., Tayapiwatana C., Kasinrerk W.
Format: Article
Language:English
Published: 2014
Online Access:http://www.scopus.com/inward/record.url?eid=2-s2.0-41349089919&partnerID=40&md5=5f3b91c544b3c2bd836d4cee5bedbb40
http://www.ncbi.nlm.nih.gov/pubmed/18284706
http://cmuir.cmu.ac.th/handle/6653943832/736
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Chiang Mai University
Language: English
id th-cmuir.6653943832-736
record_format dspace
spelling th-cmuir.6653943832-7362014-08-29T09:02:02Z Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients Cressey R. Pimpa S. Chewaskulyong B. Lertprasertsuke N. Saeteng S. Tayapiwatana C. Kasinrerk W. Background: The recognition that human tumors stimulate the production of autoantibodies has initiated the use of this immune response as serological markers for the early diagnosis and management of cancer. The enzyme-linked immunosorbent assay (ELISA) is the most common method used in detecting autoantibodies, which involves coating the microtiter plate with the tumor associated antigen (TAA) of interest and allowing serum antibodies to bind. The patient's sample is directly in contact with the coating antigen so the protein used for coating must be pure to avoid non-specific binding. In this study, a simplified method to selectively and specifically immobilize TAAs onto microtiter plates in order to detect circulating autoantibodies in cancer patients without prior purification process was described. Wild type full-length p53 protein was produced in fusion with biotin carboxyl carrier peptide (BCCP) or hexahistidine [(His)6] using pAK400 and pET15b(+) vectors, respectively. The recombinant p53 fusion protein produced was then subjected to react with either a commercial p53 monoclonal antibody (mAb) or sera from lung cancer patients and healthy volunteers in an enzyme-linked immunosorbent assay (ELISA) format. Results: Both of the immobilized p53 fusion proteins as well as the purified (His)6-p53 fusion protein had a similar dose response of detection to a commercial p53 mAb (DO7). When the biotinylated p53-BCCP fusion protein was used as an antigen to detect p53 autoantibodies in clinical samples, the result showed that human serum reacted strongly to avidin-coated microwell even in the absence of the biotinylated p53-BCCP fusion protein, thus compromised its ability to differentiate weakly positive sera from those that were negative. In contrast, the (His)6-p53 protein immobilized directly onto Ni+ coated microplate was able to identify the p53 autoantibody positive serum. In addition, its reactivity to clinical serum samples highly correlated with those obtained from using purified p53 as an antigen (R = 0.9803, p < 0.0001). Moreover, this directly immobilized p53 antigen can clearly differentiate p53 autoantibody positive sera in cancer patients from healthy volunteers' sera. Conclusion: A method of coating directly and specifically TAAs onto a microtiter plate without the purification processes was developed in this study. Although in this study only one tumor antigen was examined, the simplicity and the ability of coated antigens to identify p53 specific autoantibodies in serum accurately might enable a larger panel of TAAs specific autoantibodies to be explored as serological markers for cancer. © 2008 Cressey et al; licensee BioMed Central Ltd. 2014-08-29T09:02:02Z 2014-08-29T09:02:02Z 2008 Article 14726750 10.1186/1472-6750-8-16 18284706 BBMIE http://www.scopus.com/inward/record.url?eid=2-s2.0-41349089919&partnerID=40&md5=5f3b91c544b3c2bd836d4cee5bedbb40 http://www.ncbi.nlm.nih.gov/pubmed/18284706 http://cmuir.cmu.ac.th/handle/6653943832/736 English
institution Chiang Mai University
building Chiang Mai University Library
country Thailand
collection CMU Intellectual Repository
language English
description Background: The recognition that human tumors stimulate the production of autoantibodies has initiated the use of this immune response as serological markers for the early diagnosis and management of cancer. The enzyme-linked immunosorbent assay (ELISA) is the most common method used in detecting autoantibodies, which involves coating the microtiter plate with the tumor associated antigen (TAA) of interest and allowing serum antibodies to bind. The patient's sample is directly in contact with the coating antigen so the protein used for coating must be pure to avoid non-specific binding. In this study, a simplified method to selectively and specifically immobilize TAAs onto microtiter plates in order to detect circulating autoantibodies in cancer patients without prior purification process was described. Wild type full-length p53 protein was produced in fusion with biotin carboxyl carrier peptide (BCCP) or hexahistidine [(His)6] using pAK400 and pET15b(+) vectors, respectively. The recombinant p53 fusion protein produced was then subjected to react with either a commercial p53 monoclonal antibody (mAb) or sera from lung cancer patients and healthy volunteers in an enzyme-linked immunosorbent assay (ELISA) format. Results: Both of the immobilized p53 fusion proteins as well as the purified (His)6-p53 fusion protein had a similar dose response of detection to a commercial p53 mAb (DO7). When the biotinylated p53-BCCP fusion protein was used as an antigen to detect p53 autoantibodies in clinical samples, the result showed that human serum reacted strongly to avidin-coated microwell even in the absence of the biotinylated p53-BCCP fusion protein, thus compromised its ability to differentiate weakly positive sera from those that were negative. In contrast, the (His)6-p53 protein immobilized directly onto Ni+ coated microplate was able to identify the p53 autoantibody positive serum. In addition, its reactivity to clinical serum samples highly correlated with those obtained from using purified p53 as an antigen (R = 0.9803, p < 0.0001). Moreover, this directly immobilized p53 antigen can clearly differentiate p53 autoantibody positive sera in cancer patients from healthy volunteers' sera. Conclusion: A method of coating directly and specifically TAAs onto a microtiter plate without the purification processes was developed in this study. Although in this study only one tumor antigen was examined, the simplicity and the ability of coated antigens to identify p53 specific autoantibodies in serum accurately might enable a larger panel of TAAs specific autoantibodies to be explored as serological markers for cancer. © 2008 Cressey et al; licensee BioMed Central Ltd.
format Article
author Cressey R.
Pimpa S.
Chewaskulyong B.
Lertprasertsuke N.
Saeteng S.
Tayapiwatana C.
Kasinrerk W.
spellingShingle Cressey R.
Pimpa S.
Chewaskulyong B.
Lertprasertsuke N.
Saeteng S.
Tayapiwatana C.
Kasinrerk W.
Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients
author_facet Cressey R.
Pimpa S.
Chewaskulyong B.
Lertprasertsuke N.
Saeteng S.
Tayapiwatana C.
Kasinrerk W.
author_sort Cressey R.
title Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients
title_short Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients
title_full Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients
title_fullStr Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients
title_full_unstemmed Simplified approaches for the development of an ELISA to detect circulating autoantibodies to p53 in cancer patients
title_sort simplified approaches for the development of an elisa to detect circulating autoantibodies to p53 in cancer patients
publishDate 2014
url http://www.scopus.com/inward/record.url?eid=2-s2.0-41349089919&partnerID=40&md5=5f3b91c544b3c2bd836d4cee5bedbb40
http://www.ncbi.nlm.nih.gov/pubmed/18284706
http://cmuir.cmu.ac.th/handle/6653943832/736
_version_ 1681419539104923648