Low temperature solution-phase growth of ZnSe and ZnSe/CdSe core/shell nanowires

High quality ZnSe nanowires (NWs) and complementary ZnSe/CdSe core/shell species have been synthesized using a recently developed solution-liquid-solid (SLS) growth technique. In particular, bismuth salts as opposed to pre- synthesized Bi or Au/Bi nanoparticles have been used to grow NWs at low temp...

全面介紹

Saved in:
書目詳細資料
Main Authors: Nattasamon Petchsang, Liubov Shapoval, Felix Vietmeyer, Yanghai Yu, Jose H. Hodak, I. Ming Tang, Thomas H. Kosel, Masaru Kuno
其他作者: Mahidol University
格式: Article
出版: 2018
主題:
在線閱讀:https://repository.li.mahidol.ac.th/handle/123456789/12112
標簽: 添加標簽
沒有標簽, 成為第一個標記此記錄!
實物特徵
總結:High quality ZnSe nanowires (NWs) and complementary ZnSe/CdSe core/shell species have been synthesized using a recently developed solution-liquid-solid (SLS) growth technique. In particular, bismuth salts as opposed to pre- synthesized Bi or Au/Bi nanoparticles have been used to grow NWs at low temperatures in solution. Resulting wires are characterized using transmission electron microscopy and possess mean ensemble diameters between 15 and 28 nm with accompanying lengths ranging from 4-10 μm. Subsequent solution-based overcoating chemistry results in ZnSe wires covered with CdSe nanocrystals. By varying the shell's growth time, different thicknesses can be obtained and range from 8 to 21 nm. More interestingly, the mean constituent CdSe nanocrystal diameter can be varied and results in size-dependent shell emission spectra. © 2011 The Royal Society of Chemistry.