SOME SUPER EDGE-MAGIC TOTAL LABELINGS OF THE TREE GRAPH T A,C,D
Let G = (V (G), E (G) ) be a simple and finite graph with the vertex-set V (G) and the edge-set E (G). An edge-magic total labeling of a graph G is an injective function f from V (G) U E (G) ke {1,2,3, … , |V (G) | + |E (G) |} such that there exists a positive integer...
Saved in:
主要作者: | |
---|---|
格式: | Theses |
語言: | Indonesia |
在線閱讀: | https://digilib.itb.ac.id/gdl/view/10711 |
標簽: |
添加標簽
沒有標簽, 成為第一個標記此記錄!
|
機構: | Institut Teknologi Bandung |
語言: | Indonesia |
總結: | Let G = (V (G), E (G) ) be a simple and finite graph with the vertex-set V (G) and the edge-set E (G). An edge-magic total labeling of a graph G is an injective function f from V (G) U E (G) ke {1,2,3, … , |V (G) | + |E (G) |} such that there exists a positive integer k satisfying f (u) + f (uv) + f (v) = k for each uv E E(G). A graph having an edge-magic total labeling is called a total edge-magic graph. In this case, if f (V(G)) = {1,2,3, … , |V (G)|}, then f is called a super edge-magic total labeling of G and G is called a super edgemagic total graph. <br />
|
---|