PELABELAN TOTAL VERTEKS IRREGULAR PADA BEBERAPA GRAF HASIL KALI KARTESIUS
A total vertex irregular labeling of a graph G(V (G),E(G)), with v vertices and e edges, is an assignment: f : V (G) ? E(G) ? {1, 2, . . . , r} so that w(v) = f(v) +Pf(uv) are distinct for all vertices v ? V (G). The value of w(v) is called a weight of vertex v. Total vertex irregularity strengt...
Saved in:
Main Author: | |
---|---|
Format: | Final Project |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/11293 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:11293 |
---|---|
spelling |
id-itb.:112932017-09-27T11:43:05ZPELABELAN TOTAL VERTEKS IRREGULAR PADA BEBERAPA GRAF HASIL KALI KARTESIUS RAMDANI , RISMAWATI Indonesia Final Project Graphs labelings, total vertex irregular labelings, total vertex irregularity strength, cartesian product graphs. INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/11293 A total vertex irregular labeling of a graph G(V (G),E(G)), with v vertices and e edges, is an assignment: f : V (G) ? E(G) ? {1, 2, . . . , r} so that w(v) = f(v) +Pf(uv) are distinct for all vertices v ? V (G). The value of w(v) is called a weight of vertex v. Total vertex irregularity strength of G, denoted by tvs(G), is the minimum r so that G admits a total vertex irregular labeling. In this final project, we consider the total vertex irregular labelings of some cartesian product graphs, namely ladder graphs (P2Pn), book graphs (P2K1,n), pyramidal graphs (C3 Pn) dan graphs C4 Pn. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
A total vertex irregular labeling of a graph G(V (G),E(G)), with v vertices and e edges, is an assignment:
f : V (G) ? E(G) ? {1, 2, . . . , r}
so that w(v) = f(v) +Pf(uv) are distinct for all vertices v ? V (G). The value of w(v) is called a weight of vertex v. Total vertex irregularity strength of G, denoted by tvs(G), is the minimum r so that G admits a total vertex irregular labeling. In this final project, we consider the total vertex irregular labelings of some cartesian product graphs, namely ladder graphs (P2Pn), book graphs (P2K1,n), pyramidal graphs (C3 Pn) dan graphs C4 Pn. |
format |
Final Project |
author |
RAMDANI , RISMAWATI |
spellingShingle |
RAMDANI , RISMAWATI PELABELAN TOTAL VERTEKS IRREGULAR PADA BEBERAPA GRAF HASIL KALI KARTESIUS |
author_facet |
RAMDANI , RISMAWATI |
author_sort |
RAMDANI , RISMAWATI |
title |
PELABELAN TOTAL VERTEKS IRREGULAR PADA BEBERAPA GRAF HASIL KALI KARTESIUS |
title_short |
PELABELAN TOTAL VERTEKS IRREGULAR PADA BEBERAPA GRAF HASIL KALI KARTESIUS |
title_full |
PELABELAN TOTAL VERTEKS IRREGULAR PADA BEBERAPA GRAF HASIL KALI KARTESIUS |
title_fullStr |
PELABELAN TOTAL VERTEKS IRREGULAR PADA BEBERAPA GRAF HASIL KALI KARTESIUS |
title_full_unstemmed |
PELABELAN TOTAL VERTEKS IRREGULAR PADA BEBERAPA GRAF HASIL KALI KARTESIUS |
title_sort |
pelabelan total verteks irregular pada beberapa graf hasil kali kartesius |
url |
https://digilib.itb.ac.id/gdl/view/11293 |
_version_ |
1820666106241613824 |