MULTIPARTITE RAMSEY NUMBERS FOR PATHS

Ramsey (1930) introduced a theory concerning the finding of a procedure to determine the consistency of given logical formulas. The theory is known as Ramsey theory. ErdAos and Szekeres (1935), then, applied this theory into graphs. Ramsey theory has some applications in mathematics, information the...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: SY (NIM: 30104003), SYAFRIZAL
التنسيق: Dissertations
اللغة:Indonesia
الوصول للمادة أونلاين:https://digilib.itb.ac.id/gdl/view/12700
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
المؤسسة: Institut Teknologi Bandung
اللغة: Indonesia
id id-itb.:12700
spelling id-itb.:127002017-09-27T15:45:36ZMULTIPARTITE RAMSEY NUMBERS FOR PATHS SY (NIM: 30104003), SYAFRIZAL Indonesia Dissertations INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/12700 Ramsey (1930) introduced a theory concerning the finding of a procedure to determine the consistency of given logical formulas. The theory is known as Ramsey theory. ErdAos and Szekeres (1935), then, applied this theory into graphs. Ramsey theory has some applications in mathematics, information theory, computation, and economics (Espino, 2004). In mathematics, besides graph theory, Ramsey theory also has grown and expanded in number theory, algebra, geometry, topology, harmonic analysis, metric space, and ergodic theory (Rosta, 2004). <br /> text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
description Ramsey (1930) introduced a theory concerning the finding of a procedure to determine the consistency of given logical formulas. The theory is known as Ramsey theory. ErdAos and Szekeres (1935), then, applied this theory into graphs. Ramsey theory has some applications in mathematics, information theory, computation, and economics (Espino, 2004). In mathematics, besides graph theory, Ramsey theory also has grown and expanded in number theory, algebra, geometry, topology, harmonic analysis, metric space, and ergodic theory (Rosta, 2004). <br />
format Dissertations
author SY (NIM: 30104003), SYAFRIZAL
spellingShingle SY (NIM: 30104003), SYAFRIZAL
MULTIPARTITE RAMSEY NUMBERS FOR PATHS
author_facet SY (NIM: 30104003), SYAFRIZAL
author_sort SY (NIM: 30104003), SYAFRIZAL
title MULTIPARTITE RAMSEY NUMBERS FOR PATHS
title_short MULTIPARTITE RAMSEY NUMBERS FOR PATHS
title_full MULTIPARTITE RAMSEY NUMBERS FOR PATHS
title_fullStr MULTIPARTITE RAMSEY NUMBERS FOR PATHS
title_full_unstemmed MULTIPARTITE RAMSEY NUMBERS FOR PATHS
title_sort multipartite ramsey numbers for paths
url https://digilib.itb.ac.id/gdl/view/12700
_version_ 1825533568842989568