#TITLE_ALTERNATIVE#
<br /> <br /> <br /> The total edge irregularity strength of G, denoted by tes(G), is the smallest positive integer k such that G has a total edge irregular klabeling. In this thesis, we determine the total edge irregularity strength of hexagonal honeycomb mesh graphs.
Saved in:
Main Author: | |
---|---|
Format: | Theses |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/12765 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:12765 |
---|---|
spelling |
id-itb.:127652017-09-27T14:41:46Z#TITLE_ALTERNATIVE# FITRIA (NIM: 20107082), WENNY Indonesia Theses INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/12765 <br /> <br /> <br /> The total edge irregularity strength of G, denoted by tes(G), is the smallest positive integer k such that G has a total edge irregular klabeling. In this thesis, we determine the total edge irregularity strength of hexagonal honeycomb mesh graphs. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
<br />
<br />
<br />
The total edge irregularity strength of G, denoted by tes(G), is the smallest positive integer k such that G has a total edge irregular klabeling. In this thesis, we determine the total edge irregularity strength of hexagonal honeycomb mesh graphs. |
format |
Theses |
author |
FITRIA (NIM: 20107082), WENNY |
spellingShingle |
FITRIA (NIM: 20107082), WENNY #TITLE_ALTERNATIVE# |
author_facet |
FITRIA (NIM: 20107082), WENNY |
author_sort |
FITRIA (NIM: 20107082), WENNY |
title |
#TITLE_ALTERNATIVE# |
title_short |
#TITLE_ALTERNATIVE# |
title_full |
#TITLE_ALTERNATIVE# |
title_fullStr |
#TITLE_ALTERNATIVE# |
title_full_unstemmed |
#TITLE_ALTERNATIVE# |
title_sort |
#title_alternative# |
url |
https://digilib.itb.ac.id/gdl/view/12765 |
_version_ |
1820728617451126784 |