#TITLE_ALTERNATIVE#

Main purpose of this research is to investigate Geographically Weighted Regression (GWR) method compared to linear regression method for land value modeling based on Geographic Information System. GWR method or regression with geographical weight has advantage such as ability to include local criter...

Full description

Saved in:
Bibliographic Details
Main Author: SUSANTO (NIM 15105056); Pembimbing : Ir. Albertus Deliar, MT. dan Dr. Ir. D.Muhally Hakim, M., HENDRA
Format: Final Project
Language:Indonesia
Subjects:
Online Access:https://digilib.itb.ac.id/gdl/view/13520
Tags: Add Tag
No Tags, Be the first to tag this record!
Institution: Institut Teknologi Bandung
Language: Indonesia
id id-itb.:13520
spelling id-itb.:135202017-10-09T10:51:10Z#TITLE_ALTERNATIVE# SUSANTO (NIM 15105056); Pembimbing : Ir. Albertus Deliar, MT. dan Dr. Ir. D.Muhally Hakim, M., HENDRA Teknik (Rekayasa, enjinering dan kegiatan berkaitan) Indonesia Final Project INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/13520 Main purpose of this research is to investigate Geographically Weighted Regression (GWR) method compared to linear regression method for land value modeling based on Geographic Information System. GWR method or regression with geographical weight has advantage such as ability to include local criteria in modeling calculation (Fotheringham et al., 2002). This advantage probably very compatible to applied in land value modeling, especially because land value very influenced by location factor (Atack, 1998) ; (Hariadi, 2003).<p> With local criteria represented by weight for each value sample in land value modeling, this research gets result that land value produced by GWR method are better compared to land value produced by linear regression method. This proven by correlation coefficient for GWR method modeling has value of 0.320 and Root Mean Square error 822535,393 whereas with linear regression, correlation coefficient only reaches 0.277 and Root Mean Square error 933094,074. text
institution Institut Teknologi Bandung
building Institut Teknologi Bandung Library
continent Asia
country Indonesia
Indonesia
content_provider Institut Teknologi Bandung
collection Digital ITB
language Indonesia
topic Teknik (Rekayasa, enjinering dan kegiatan berkaitan)
spellingShingle Teknik (Rekayasa, enjinering dan kegiatan berkaitan)
SUSANTO (NIM 15105056); Pembimbing : Ir. Albertus Deliar, MT. dan Dr. Ir. D.Muhally Hakim, M., HENDRA
#TITLE_ALTERNATIVE#
description Main purpose of this research is to investigate Geographically Weighted Regression (GWR) method compared to linear regression method for land value modeling based on Geographic Information System. GWR method or regression with geographical weight has advantage such as ability to include local criteria in modeling calculation (Fotheringham et al., 2002). This advantage probably very compatible to applied in land value modeling, especially because land value very influenced by location factor (Atack, 1998) ; (Hariadi, 2003).<p> With local criteria represented by weight for each value sample in land value modeling, this research gets result that land value produced by GWR method are better compared to land value produced by linear regression method. This proven by correlation coefficient for GWR method modeling has value of 0.320 and Root Mean Square error 822535,393 whereas with linear regression, correlation coefficient only reaches 0.277 and Root Mean Square error 933094,074.
format Final Project
author SUSANTO (NIM 15105056); Pembimbing : Ir. Albertus Deliar, MT. dan Dr. Ir. D.Muhally Hakim, M., HENDRA
author_facet SUSANTO (NIM 15105056); Pembimbing : Ir. Albertus Deliar, MT. dan Dr. Ir. D.Muhally Hakim, M., HENDRA
author_sort SUSANTO (NIM 15105056); Pembimbing : Ir. Albertus Deliar, MT. dan Dr. Ir. D.Muhally Hakim, M., HENDRA
title #TITLE_ALTERNATIVE#
title_short #TITLE_ALTERNATIVE#
title_full #TITLE_ALTERNATIVE#
title_fullStr #TITLE_ALTERNATIVE#
title_full_unstemmed #TITLE_ALTERNATIVE#
title_sort #title_alternative#
url https://digilib.itb.ac.id/gdl/view/13520
_version_ 1820736211042435072