#TITLE_ALTERNATIVE#
Hamming weight enumerator is a 2 variables polynomial containing information about the weight distribution of codewords of a linear code. It is known that for a binary self-dual code with all weights divisible by 4, its Hamming weight enumerator is unchanged (or invarian) under the action of a group...
Saved in:
Main Author: | |
---|---|
Format: | Final Project |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/13647 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:13647 |
---|---|
spelling |
id-itb.:136472017-09-27T11:43:06Z#TITLE_ALTERNATIVE# FAJAR SIDIK (NIM 10102023); Pembimbing: Dr. Djoko Suprijanto, M. Indonesia Final Project INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/13647 Hamming weight enumerator is a 2 variables polynomial containing information about the weight distribution of codewords of a linear code. It is known that for a binary self-dual code with all weights divisible by 4, its Hamming weight enumerator is unchanged (or invarian) under the action of a group of order 192 and belong to a spesific ring of invariant (MacWilliams dan Sloane, 1977). In this final project, we investigate a structure of invariant ring to which the Hamming weight enumerators belong for self-dual codes over Fq using invariant theory. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
Hamming weight enumerator is a 2 variables polynomial containing information about the weight distribution of codewords of a linear code. It is known that for a binary self-dual code with all weights divisible by 4, its Hamming weight enumerator is unchanged (or invarian) under the action of a group of order 192 and belong to a spesific ring of invariant (MacWilliams dan Sloane, 1977). In this final project, we investigate a structure of invariant ring to which the Hamming weight enumerators belong for self-dual codes over Fq using invariant theory. |
format |
Final Project |
author |
FAJAR SIDIK (NIM 10102023); Pembimbing: Dr. Djoko Suprijanto, M. |
spellingShingle |
FAJAR SIDIK (NIM 10102023); Pembimbing: Dr. Djoko Suprijanto, M. #TITLE_ALTERNATIVE# |
author_facet |
FAJAR SIDIK (NIM 10102023); Pembimbing: Dr. Djoko Suprijanto, M. |
author_sort |
FAJAR SIDIK (NIM 10102023); Pembimbing: Dr. Djoko Suprijanto, M. |
title |
#TITLE_ALTERNATIVE# |
title_short |
#TITLE_ALTERNATIVE# |
title_full |
#TITLE_ALTERNATIVE# |
title_fullStr |
#TITLE_ALTERNATIVE# |
title_full_unstemmed |
#TITLE_ALTERNATIVE# |
title_sort |
#title_alternative# |
url |
https://digilib.itb.ac.id/gdl/view/13647 |
_version_ |
1820736248466112512 |