#TITLE_ALTERNATIVE#
For certain graphs F, G and H, notation of F -> (G,H) mean that any red-blue coloring of the edges of F, There will be contains a red subgraph of G or a blue subgraph of H on F. Graph F is (G,H)-minimal Ramsey if F -> (G,H) and F* -> (G,H) for any real subgraph of F* of F. Then R(G,H) expla...
Saved in:
Main Author: | |
---|---|
Format: | Final Project |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/14859 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:14859 |
---|---|
spelling |
id-itb.:148592017-09-27T11:43:09Z#TITLE_ALTERNATIVE# EKANANDA (NIM : 10105004); Pembimbing : Prof. Dr. Edy Tri Baskoro, ANDHIKA Indonesia Final Project INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/14859 For certain graphs F, G and H, notation of F -> (G,H) mean that any red-blue coloring of the edges of F, There will be contains a red subgraph of G or a blue subgraph of H on F. Graph F is (G,H)-minimal Ramsey if F -> (G,H) and F* -> (G,H) for any real subgraph of F* of F. Then R(G,H) explains class consist of all (G,H)-minimal Ramsey graph. <br /> <br /> <br /> In 1978 Burr, Erdos and Faudree [2] have investigated class R(2K2,C3) by showing that R(2K2,C3) = {K5,2C3,B1}. In this final project, we investigate class of R(2K2,nC3) minimal Ramsey graph for n > 2. As result we got R(2K2,nC3) = {(n+1)C3, nK5, nB1, n1K5 U n2B1 U n3A1} for n1+n2+2n3=n {n1,n2,n3}>0 and n>1 and R(2K2,nC3) = tA1 for t=n/2, n>2 and n even. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
For certain graphs F, G and H, notation of F -> (G,H) mean that any red-blue coloring of the edges of F, There will be contains a red subgraph of G or a blue subgraph of H on F. Graph F is (G,H)-minimal Ramsey if F -> (G,H) and F* -> (G,H) for any real subgraph of F* of F. Then R(G,H) explains class consist of all (G,H)-minimal Ramsey graph. <br />
<br />
<br />
In 1978 Burr, Erdos and Faudree [2] have investigated class R(2K2,C3) by showing that R(2K2,C3) = {K5,2C3,B1}. In this final project, we investigate class of R(2K2,nC3) minimal Ramsey graph for n > 2. As result we got R(2K2,nC3) = {(n+1)C3, nK5, nB1, n1K5 U n2B1 U n3A1} for n1+n2+2n3=n {n1,n2,n3}>0 and n>1 and R(2K2,nC3) = tA1 for t=n/2, n>2 and n even. |
format |
Final Project |
author |
EKANANDA (NIM : 10105004); Pembimbing : Prof. Dr. Edy Tri Baskoro, ANDHIKA |
spellingShingle |
EKANANDA (NIM : 10105004); Pembimbing : Prof. Dr. Edy Tri Baskoro, ANDHIKA #TITLE_ALTERNATIVE# |
author_facet |
EKANANDA (NIM : 10105004); Pembimbing : Prof. Dr. Edy Tri Baskoro, ANDHIKA |
author_sort |
EKANANDA (NIM : 10105004); Pembimbing : Prof. Dr. Edy Tri Baskoro, ANDHIKA |
title |
#TITLE_ALTERNATIVE# |
title_short |
#TITLE_ALTERNATIVE# |
title_full |
#TITLE_ALTERNATIVE# |
title_fullStr |
#TITLE_ALTERNATIVE# |
title_full_unstemmed |
#TITLE_ALTERNATIVE# |
title_sort |
#title_alternative# |
url |
https://digilib.itb.ac.id/gdl/view/14859 |
_version_ |
1820737330485395456 |