BEST POLYNOMIALS APPROXIMATION
Approximation is a method to approximate function with another simpler function. <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br />...
Saved in:
Main Author: | |
---|---|
Format: | Theses |
Language: | Indonesia |
Online Access: | https://digilib.itb.ac.id/gdl/view/15247 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Institution: | Institut Teknologi Bandung |
Language: | Indonesia |
id |
id-itb.:15247 |
---|---|
spelling |
id-itb.:152472017-09-27T14:41:42ZBEST POLYNOMIALS APPROXIMATION AMIR HAMZAH (NIM :20110011), DADANG Indonesia Theses INSTITUT TEKNOLOGI BANDUNG https://digilib.itb.ac.id/gdl/view/15247 Approximation is a method to approximate function with another simpler function. <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> In this Thesis we discus about best polynomial approximation. the polynomial that approximate <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> the function best due to their properties called minimax polynomial. To <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> and the minimax polynomial of degree 1, we use <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> <br /> the method that we call Method of Least Parallelogram. text |
institution |
Institut Teknologi Bandung |
building |
Institut Teknologi Bandung Library |
continent |
Asia |
country |
Indonesia Indonesia |
content_provider |
Institut Teknologi Bandung |
collection |
Digital ITB |
language |
Indonesia |
description |
Approximation is a method to approximate function with another simpler function. <br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
In this Thesis we discus about best polynomial approximation. the polynomial that approximate <br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
the function best due to their properties called minimax polynomial. To <br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
and the minimax polynomial of degree 1, we use <br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
<br />
the method that we call Method of Least Parallelogram. |
format |
Theses |
author |
AMIR HAMZAH (NIM :20110011), DADANG |
spellingShingle |
AMIR HAMZAH (NIM :20110011), DADANG BEST POLYNOMIALS APPROXIMATION |
author_facet |
AMIR HAMZAH (NIM :20110011), DADANG |
author_sort |
AMIR HAMZAH (NIM :20110011), DADANG |
title |
BEST POLYNOMIALS APPROXIMATION |
title_short |
BEST POLYNOMIALS APPROXIMATION |
title_full |
BEST POLYNOMIALS APPROXIMATION |
title_fullStr |
BEST POLYNOMIALS APPROXIMATION |
title_full_unstemmed |
BEST POLYNOMIALS APPROXIMATION |
title_sort |
best polynomials approximation |
url |
https://digilib.itb.ac.id/gdl/view/15247 |
_version_ |
1820737427599261696 |